An integration of Euler's pentagonal partition
نویسنده
چکیده
A recurrent formula is presented, for the enumeration of the compositions of positive integers as sums over multisets of positive integers, that closely resembles Euler’s recurrence based on the pentagonal numbers, but where the coefficients result from a discrete integration of Euler’s coefficients. Both a bijective proof and one based on generating functions show the equivalence of the subject recurrences.
منابع مشابه
ar X iv : m at h / 05 10 05 4 v 2 [ m at h . H O ] 1 7 A ug 2 00 6 EULER AND THE PENTAGONAL NUMBER THEOREM
In this paper we give the history of Leonhard Euler's work on the pentagonal number theorem, and his applications of the pentagonal number theorem to the divisor function, partition function and divergent series. We have attempted to give an exhaustive review of all of Euler's correspondence and publications about the pentagonal number theorem and his applications of it. Comprehensus: In hoc di...
متن کاملFranklin ’ s argument proves an identity of Zagier Robin Chapman
Recently Zagier proved a remarkable q-series identity. We show that this identity can also be proved by modifying Franklin's classical proof of Euler's pentagonal number theorem.
متن کاملThe truncated pentagonal number theorem
A new expansion is given for partial sums of Euler’s pentagonal number series. As a corollary we derive an infinite family of inequalities for the partition function, p(n).
متن کاملMultiple extensions of a finite Euler's pentagonal number theorem and the Lucas formulas
X iv :0 70 7. 43 28 v1 [ m at h. C O ] 3 0 Ju l 2 00 7 Multiple extensions of a finite Euler’s pentagonal number theorem and the Lucas formulas Victor J. W. Guo1 and Jiang Zeng2 Department of Mathematics, East China Normal University, Shanghai 200062, People’s Republic of China [email protected], http://math.ecnu.edu.cn/~jwguo 2 Université de Lyon; Université Lyon 1; Institut Camille Jorda...
متن کاملInterpreting the Truncated Pentagonal Number Theorem using Partition Pairs
In 2012 Andrews and Merca gave a new expansion for partial sums of Euler’s pentagonal number series and expressed k−1 ∑ j=0 (−1)(p(n− j(3j + 1)/2)− p(n− j(3j + 5)/2− 1)) = (−1)Mk(n) where Mk(n) is the number of partitions of n where k is the least integer that does not occur as a part and there are more parts greater than k than there are less than k. We will show that Mk(n) = Ck(n) where Ck(n)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1009.3645 شماره
صفحات -
تاریخ انتشار 2010